Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.038
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149599, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608493

RESUMO

Osteoarthritis is a highly prevalent joint disease; however, effective treatments are lacking. Protopine (PTP) is an isoquinoline alkaloid with potent anti-inflammatory and antioxidant properties; however, it has not been studied in osteoarthritis. This study aimed to investigate whether PTP can effectively protect chondrocytes from ferroptosis. Primary mouse chondrocytes were treated with tert-butyl hydroperoxide (TBHP) to simulate oxidative stress in an in vitro model of osteoarthritis. Two concentrations of PTP (10 and 20 µg/mL) were validated for in vitro experiments. Cellular inflammation and metabolism were detected using RT-qPCR and western blotting (WB). Ferroptosis was assessed via WB, qPCR, reactive oxygen species (ROS) levels, lipid ROS, and immunofluorescence staining. In vitro, PTP significantly ameliorated chondrocyte inflammation and cytolytic metabolism and significantly suppressed chondrocyte ferroptosis through the activation of the Nrf2 pathway. The anterior cruciate ligament transection (ACLT) mouse model was used to validate the in vivo effects of PTP. The joint cartilage was assessed using the Osteoarthritis Research Society International (OARSI) score, Safranin O staining, and immunohistochemistry. The intra-articular administration of PTP alleviated cartilage inflammation and ferroptosis, as evidenced by the expression of MMP3, MMP13, COL2A1, GPX4, and Nrf2. Overall, we find that PTP exerted anti-ferroptosis and anti-inflammatory effects on chondrocytes to protect the articular cartilage.


Assuntos
Benzofenantridinas , Alcaloides de Berberina , Ferroptose , Osteoartrite , Camundongos , Animais , Condrócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 174-181, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650145

RESUMO

Ovarian cancer is a prevalent malignancy in the female reproductive system, representing a significantly fatal and incurable tumor. Chelerythrine (CHE), a natural benzopyridine alkaloid, has demonstrated a broad spectrum of anticancer activities. Nevertheless, the ovarian cancer inhibitory impact of CHE remains unclear. In this study, we investigated the cytotoxic mechanism and potential targets of CHE on in vitro cultures of A2780 and SKOV3 cells derived from ovarian cancer. Additionally, in vivo experiments were conducted to confirm the suppressive impact of CHE on tumor growth in nude mice. The findings revealed that CHE impeded the growth of A2780 and SKOV3 cells in a concentration-time-dependent manner and significantly suppressed the development of tumors in nude mice. CHE elevated the level of oxidative stress in tumor cells, prompted cell cycle halt in the S phase, and increased their mitochondrial membrane potential. Western blotting results demonstrated that CHE could modulate the expression of proteins associated with apoptotic and ferroptosis processes in A2780 and SKOV3 cells. Nrf2 was verified to be an upstream key target mediating the inhibitory impact of CHE on ovarian cancer cells. In summary, CHE exerts its anti-cancer effects on ovarian cancer by modulating Nrf2, inhibiting cellular proliferation, and promoting apoptosis and ferroptosis.


Assuntos
Apoptose , Benzofenantridinas , Proliferação de Células , Ferroptose , Camundongos Nus , Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Feminino , Benzofenantridinas/farmacologia , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular Tumoral , Ferroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453737

RESUMO

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extratos Vegetais/química
4.
Biomed Pharmacother ; 173: 116406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460366

RESUMO

Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-ß, MAPK and Wnt/ß-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.


Assuntos
Alcaloides , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Benzofenantridinas/farmacologia , Alcaloides/metabolismo , Isoquinolinas/farmacologia
5.
Int J Nanomedicine ; 19: 2409-2428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476281

RESUMO

Background and Purpose: Nitidine chloride (NC) is a botanical drug renowned for its potent anti-inflammatory, antimalarial, and hepatocellular carcinoma-inhibiting properties; however, its limited solubility poses challenges to its development and application. To address this issue, we have devised a colon-targeted delivery system (NC-CS/PT-NPs) aimed at modulating the dysbiosis of the gut microbiota by augmenting the interaction between NC and the intestinal microbiota, thereby exerting an effect against nonalcoholic fatty liver disease. Methods: The NC-CS/PT-NPs were synthesized using the ion gel method. Subsequently, the particle size distribution, morphology, drug loading efficiency, and release behavior of the NC-CS/PT-NPs were characterized. Furthermore, the impact of NC-CS/PT-NPs on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice was investigated through serum biochemical analysis, ELISA, and histochemical staining. Additionally, the influence of NC-CS/PT-NPs on intestinal microbiota was analyzed using 16S rDNA gene sequencing. Results: The nanoparticles prepared in this study have an average particle size of (255.9±5.10) nm, with an encapsulation rate of (72.83±2.13) % and a drug loading of (4.65±0.44) %. In vitro release experiments demonstrated that the cumulative release rate in the stomach and small intestine was lower than 22.0%, while it reached 66.75% in the colon. In vivo experiments conducted on HFD-induced NAFLD mice showed that treatment with NC-CS/PT-NPs inhibited weight gain, decreased serum aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and lipid levels, improved liver and intestinal inflammation, and altered the diversity of gut microbiota in mice. Conclusion: This study provides new evidence for the treatment of NAFLD through the regulation of gut microbiota using active ingredients from traditional Chinese medicine.


Assuntos
Benzofenantridinas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fígado , Intestino Delgado , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
6.
Curr Mol Pharmacol ; 17: e18761429269383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389415

RESUMO

BACKGROUND: Lung cancer (LC) incidence is rising globally and is reflected as a leading cause of cancer-associated deaths. Lung cancer leads to multistage carcinogenesis with gradually increasing genetic and epigenetic changes. AIMS: Sanguinarine (sang) mediated the anticancer effect in LCC lines by involving the stimulation of reactive oxygen species (ROS), impeding Bcl2, and enhancing Bax and other apoptosis-associated protein Caspase-3, -9, and -PARP, subsequently inhibiting the LC invasion and migration. OBJECTIVE: This study was conducted to investigate the apoptotic rate and mechanism of Sang in human LC cells (LCC) H522 and H1299. METHODS: MTT assay to determine the IC50, cell morphology, and colony formation assay were carried out to show the sanguinarine effect on the LC cell line. Moreover, scratch assay and transwell assay were performed to check the migration. Western blotting and qPCR were done to show its effects on targeted proteins and genes. ELISA was performed to show the VEGF effect after Sanguinarine treatment. Immunofluorescence was done to check the interlocution of the targeted protein. RESULTS: Sang significantly inhibited the growth of LCC lines in both time- and dose-dependent fashions. Flow cytometry examination and Annexin-V labeling determined that Sang increased the apoptotic cell percentage. H522 and H1299 LCC lines treated with Sang showed distinctive characteristics of apoptosis, including morphological changes and DNA fragmentation. CONCLUSION: Sang exhibited anticancer potential in LCC lines and could induce apoptosis and impede the invasion and migration of LCC, emerging as a promising anticancer natural agent in lung cancer management.


Assuntos
Antineoplásicos , Isoquinolinas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estresse Oxidativo
7.
Parasitol Res ; 123(2): 143, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407619

RESUMO

The objective of the study was to evaluate the in vitro and in vivo schistosomicidal activity of sanguinarine (SA) on Schistosoma mansoni and its in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The activity of SA in vitro, at the concentrations of 1.0-25 µM, was analyzed through the parameters of motility, mortality, and cell viability of the worms at intervals of 3-24 h. Mice were infected with cercariae and treated by gavage with SA (5 mg/kg/day, in a single dose or two doses of 2.5 mg/kg every 12 h for 5 consecutive days) on the 1st (skin schistosomula), 14th (pulmonary schistosomula), 28th (young worms), and 45th (adult worms) days after infection. In vitro and in vivo praziquantel was the control. In vitro, SA showed schistosomicidal activity against schistosomula, young worms, and couples; with total mortality and reduced cell viability at low concentrations and incubation time. In a single dose of 5 mg/kg/day, SA reduces the total worm load by 47.6%, 54%, 55.2%, and 27.1%, and female worms at 52.0%, 39.1%, 52.7%, and 20.2%, respectively, results which are similar to the 2.5 mg/kg/day dose. SA reduced the load of eggs in the liver, and in histopathological and histomorphometric analyses, there was a reduction in the number and volume of hepatic granulomas, which exhibited less inflammatory infiltrate. SA has promising in vitro and in vivo schistosomicidal activity against different developmental stages of S. mansoni, in addition to reducing granulomatous liver lesions. Furthermore, in silico, SA showed good predictive pharmacokinetic ADMET profiles.


Assuntos
Alcaloides , Anti-Infecciosos , Isoquinolinas , Esquistossomicidas , Feminino , Animais , Camundongos , Antiparasitários , Schistosoma mansoni , Benzofenantridinas/farmacologia , Alcaloides/farmacologia
8.
Phytomedicine ; 126: 155410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367422

RESUMO

BACKGROUND: Chronic airway inflammation and hyperresponsiveness are characteristics of asthma. The isoquinoline alkaloid protopine (PRO) has been shown to exert anti-inflammatory effects, but its mechanism of action in asthma is not known. PURPOSE: Investigate the protective properties of PRO upon asthma and elucidate its mechanism. STUDY DESIGN AND METHODS: The effects of PRO in asthma treatment were assessed by histology, biochemical analysis, and real-time reverse transcription-quantitative polymerase chain reaction. Then, we integrated molecular docking, western blotting, cellular experiments, immunohistochemistry, immunofluorescence analysis, flow cytometry, and metabolomics analysis to reveal its mechanism. RESULTS: In vivo, PRO therapy reduced the number of inflammatory cells (eosinophils, leukocytes, monocytes) in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of IgG and histamine. Molecular docking showed that PRO could dock with the proteins of TLR4, MyD88, TRAF6, TAK1, IKKα, and TNF-α. Western blotting displayed that PRO inhibited the TLR4/NF-κB signaling pathway. PRO regulated expression of the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3) inflammasome, gasdermin D, caspase-1, and drove caspase-1 inactivation to affect inflammatory responses by inhibiting the NLRP3 inflammasome. In vitro, 24 h after treatment with PRO, cell activity, as well as levels of reactive oxygen species (ROS) and interleukin (IL)-1ß and IL-18, decreased significantly. Immunofluorescence staining showed that PRO decreased expression of TLR4 and MyD88 in vitro. PRO decreased nuclear translocation of NF-κB p65. Twenty-one potential biomarkers in serum were identified using metabolomics analysis, and they predominantly controlled the metabolism of phenylalanine, tryptophan, glucose, and sphingolipids. CONCLUSION: PRO reduced OVA-induced asthma. The underlying mechanism was associated with the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome-mediated pyroptosis.


Assuntos
Asma , Benzofenantridinas , Alcaloides de Berberina , NF-kappa B , Humanos , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Ovalbumina , Piroptose , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Asma/induzido quimicamente , Asma/tratamento farmacológico , Inflamação , Caspase 1/metabolismo
9.
J Med Chem ; 67(4): 2802-2811, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38330258

RESUMO

Chelerythrine chloride (CHE) is a quaternary benzo[c]phenanthridine alkaloid with an iminium group that was found to cause time- and concentration-dependent inhibition of CYP3A4. The loss of CYP3A4 activity was independent of NADPH. CYP3A4 competitive inhibitor ketoconazole and nucleophile N-acetylcysteine (NAC) slowed the inactivation. No recovery of CYP3A4 activity was observed after dialysis. Dihydrochelerythrine hardly inhibited CYP3A4, suggesting that the iminium group was primarily responsible for the inactivation. UV spectral analysis revealed that the maximal absorbance of CHE produced a significant red-shift after being mixed with NAC, suggesting that 1,2-addition possibly took place between the sulfhydryl group of NAC and iminium group of CHE. Molecular dynamics simulation and site-direct mutagenesis studies demonstrated that modification of Cys239 by the iminium group of CHE attributed to the inactivation. In conclusion, CHE is an affinity-labeling inactivator of CYP3A4. The observed enzyme inactivation resulted from the modification of Cys239 of CYP3A4 by the iminium group of CHE.


Assuntos
Alcaloides , Antineoplásicos , Benzofenantridinas , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia
10.
Front Biosci (Landmark Ed) ; 29(1): 40, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287817

RESUMO

BACKGROUND: The benzophenanthridine Sanguinarine (Sng) is one of the most abundant root alkaloids with a long history of investigation and pharmaceutical applications. The cytotoxicity of Sng against various tumor cells is well-established; however, its antiproliferative and apoptotic potential against the cutaneous squamous cell carcinoma (cSCC) cells remains unknown. In the present study, we investigated the anti-cancer potential of Sng against cSCC cells and elucidated the underlying mechanisms relevant to the drug action. METHODS: The inhibitory effect of Sng on cSCC cells was evaluated by analyzing cell viability, colony-forming ability and multi-caspase activity. Apoptosis was quantified through Annexin-V/Propidium iodide flow cytometric assay and antagonized by pan-caspase inhibitor z-VAD-FMK. Mitochondrial membrane potential (ΔΨm) dysfunction was analyzed by JC-1 staining, whereas reactive oxygen species (ROS) generation was confirmed by pretreatment with N-acetylcysteine (NAC) and fluorogenic probe-based flow cytometric detection. The expression of cell cycle regulatory proteins, apoptotic proteins and MAPK signaling molecules was determined by Western blotting. Involvement of JNK, p38-MAPK and MEK/ERK in ROS-mediated apoptosis was investigated by pretreatment with SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor), respectively. The stemness-targeting potential of Sng was assessed in tumor cell-derived spheroids. RESULTS: Treatment with Sng decreased cell viability and colony formation in primary (A431) and metastatic (A388) cSCC cells in a time- and dose-dependent manner. Sng significantly inhibited cell proliferation by inducing sub-G0/G1 cell-cycle arrest and apoptosis in cSCC cells. Sng evoked ROS generation, intracellular glutathione (GSH) depletion, ΔΨm depolarization and the activation of JNK pathway as well as that of caspase-3, -8, -9, and PARP. Antioxidant NAC inhibited ROS production, replenished GSH levels, and abolished apoptosis induced by Sng by downregulating JNK. Pretreatment with z-VAD-FMK inhibited Sng-mediated apoptosis. The pharmacological inhibition of JNK by SP600125 mitigated Sng-induced apoptosis in metastatic cSCC cells. Finally, Sng ablated the stemness of metastatic cSCC cell-derived spheroids. CONCLUSION: Our results indicate that Sng exerts a potent cytotoxic effect against cSCC cells that is underscored by a mechanism involving multiple levels of cooperation, including cell-cycle sub-G0/G1 arrest and apoptosis induction through ROS-dependent activation of the JNK signaling pathway. This study provides insight into the potential therapeutic application of Sng targeting cSCC.


Assuntos
Antracenos , Carcinoma de Células Escamosas , Isoquinolinas , Neoplasias Cutâneas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Benzofenantridinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Transdução de Sinais , Apoptose , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral
11.
J Biomol Struct Dyn ; 42(4): 1655-1669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37194452

RESUMO

Many natural products have been shown to possess antiplasmodial activities, but their protein targets are unknown. This work employed molecular docking and molecular dynamics simulations to explore the inhibitory activity of some antiplasmodial natural products against wild-type and mutant strains of Plasmodium falciparum dihydrofolate reductase (PfDHFR). From the molecular docking study, 6 ligands preferentially bind at the active site of the DHFR domain with binding energies ranging from -6.4 to -9.5 kcal/mol. Interactions of compounds with MET55 and PHE58 were mostly observed in the molecular docking study. From the molecular dynamics study, the binding of 2 of the ligands-nitidine and oplodiol-was observed to be stable against all tested strains of PfDHFR. The average binding free energy of oplodiol in complex with the various PfDHFR strains was -93.701 kJ/mol whereas that of nitidine was -106.206 kJ/mol. The impressive in silico activities of the 2 compounds suggest they could be considered for development as potential antifolate agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Benzofenantridinas , Produtos Biológicos , Naftóis , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química , Simulação de Acoplamento Molecular , Tetra-Hidrofolato Desidrogenase/química
12.
Microbiol Spectr ; 12(1): e0323723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38038452

RESUMO

IMPORTANCE: The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.


Assuntos
Benzofenantridinas , Proteínas de Escherichia coli , Escherichia coli , Isoquinolinas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
13.
Int J Biol Macromol ; 257(Pt 2): 128727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092109

RESUMO

Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.


Assuntos
Isoquinolinas , Papaveraceae , Melhoramento Vegetal , Genômica , Benzofenantridinas , Papaveraceae/genética
14.
Int Immunopharmacol ; 127: 111408, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38128309

RESUMO

Microglia aggregate in regions of active inflammation and demyelination in the CNS of multiple sclerosis (MS) patients and are considered pivotal in the disease process. Targeting microglia is a promising therapeutic approach for myelin repair. Previously, we identified two candidates for microglial modulation and remyelination using a Connectivity Map (CMAP)-based screening strategy. Interestingly, with results that overlapped, sanguinarine (SAN) emerged as a potential drug candidate to modulate microglial polarization and promote remyelination. In the current study, we demonstrate the efficacy of SAN in mitigating the MS-like experimental autoimmune encephalomyelitis (EAE) in a dose-dependent manner. Meanwhile, prophylactic administration of a medium dose (2.5 mg/kg) significantly reduces disease incidence and ameliorates clinical signs in EAE mice. At the cellular level, SAN reduces the accumulation of microglia in the spinal cord. Morphological analyses and immunophenotyping reveal a less activated state of microglia following SAN administration, supported by decreased inflammatory cytokine production in the spinal cord. Mechanistically, SAN skews primary microglia towards an immunoregulatory state and mitigates proinflammatory response through PPARγ activation. This creates a favorable milieu for the differentiation of oligodendrocyte progenitor cells (OPCs) when OPCs are incubated with conditioned medium from SAN-treated microglia. We further extend our investigation into the cuprizone-induced demyelinating model, confirming that SAN treatment upregulates oligodendrocyte lineage genes and increases myelin content, further suggesting its pro-myelination effect. In conclusion, our data propose SAN as a promising candidate adding to the preclinical therapeutic arsenal for regulating microglial function and promoting myelin repair in CNS demyelinating diseases such as MS.


Assuntos
Benzofenantridinas , Encefalomielite Autoimune Experimental , Isoquinolinas , Esclerose Múltipla , Humanos , Camundongos , Animais , Microglia , PPAR gama , Encefalomielite Autoimune Experimental/tratamento farmacológico , Bainha de Mielina/fisiologia , Esclerose Múltipla/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
Stud Health Technol Inform ; 308: 480-486, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007774

RESUMO

In this study, we utilized a pharmacological network and bioinformatics approach to investigate the molecular mechanism underlying the resistance of Protopine (PRO) against Triple Negative Breast Cancer (TNBC). To uncover the underlying mechanism of PRO, we employed network pharmacology analysis. We collected and enriched targets using various databases such as TCMSP, SwissTargetPrediction, PubChem, Genecards, and DAVID. Furthermore, we constructed Potential targets network and components-disease-core targets network by STRING 11.5 and Cytoscape 3.7.1 to investigate the association of targets of PRO with disease targets of TNBC. The results of the network pharmacology approach indicated that PRO may play a key role in protein phosphorylation, protein autophosphorylation, Progesterone-mediated oocyte maturation signaling pathway, PI3K-Akt signaling pathway, and acting as targets such as PRKACA, JAK2, CDK2, LRRK2, CCNE1, KDR, JAK1. Our findings suggest that PRO exerts its effects against TNBC through multi-channel and multi-target mechanisms. Therefore, this study provides a basis for further research on the mechanism of action of PRO.


Assuntos
Alcaloides de Berberina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Fosfatidilinositol 3-Quinases , Benzofenantridinas
16.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895085

RESUMO

Defects in cell death signaling pathways are one of the hallmarks of cancer and can lead to resistance to conventional therapy. Natural products are promising compounds that can overcome this resistance. In the present study we studied the effect of six quaternary benzophenanthridine alkaloids (QBAs), sanguinarine, chelerythrine, sanguirubine, chelirubine, sanguilutine, and chelilutine, on Jurkat leukemia cells, WT, and cell death deficient lines derived from them, CASP3/7/6-/- and FADD-/-, and on solid tumor, human malignant melanoma, A375 cells. We demonstrated the ability of QBAs to overcome the resistance of these deficient cells and identified a novel mechanism for their action. Sanguinarine and sanguirubine completely and chelerythrine, sanguilutine, and chelilutine partially overcame the resistance of CASP3/7/6-/- and FADD-/- cells. By detection of cPARP, a marker of apoptosis, and pMLKL, a marker of necroptosis, we proved the ability of QBAs to induce both these cell deaths (bimodal cell death) with apoptosis preceding necroptosis. We identified the new mechanism of the cell death induction by QBAs, the downregulation of the apoptosis inhibitors cIAP1 and cIAP2, i.e., an effect similar to that of Smac mimetics.


Assuntos
Alcaloides , Apoptose , Humanos , Benzofenantridinas/farmacologia , Caspase 3/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
17.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836684

RESUMO

Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this study, the inhibition of three benzophenanthridine alkaloids, including chelerythrine, sanguinarine, and nitidine, on recombinant TXNRD1 was investigated, and their anti-cancer mechanisms were revealed using three gastric cancer cell lines. Chelerythrine and sanguinarine are more potent inhibitors of TXNRD1 than nitidine, and the inhibitory effects take place in a dose- and time-dependent manner. Site-directed mutagenesis of TXNRD1 and in vitro inhibition analysis proved that chelerythrine or sanguinarine is primarily bound to the Sec498 residue of the enzyme, but the neighboring Cys497 and remaining N-terminal redox-active cysteines could also be modified after the conjugation of Sec498. With high similarity to sanguinarine, chelerythrine exhibited cytotoxic effects on multiple gastric cancer cell lines and suppressed the proliferation of tumor spheroids derived from NCI-N87 cells. Chelerythrine elevated cellular levels of reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress. Moreover, the ROS induced by chelerythrine could be completely suppressed by the addition of N-acetyl-L-cysteine (NAC), and the same is true for sanguinarine. Notably, Nec-1, an RIPK1 inhibitor, rescued the chelerythrine-induced rapid cell death, indicating that chelerythrine triggers necroptosis in gastric cancer cells. Taken together, this study demonstrates that chelerythrine is a novel inhibitor of TXNRD1 by targeting Sec498 and possessing high anti-tumor properties on multiple gastric cancer cell lines by eliciting necroptosis.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Gástricas , Humanos , Benzofenantridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Alcaloides/farmacologia , Alcaloides/química , Oxirredução
18.
Antiviral Res ; 219: 105732, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832876

RESUMO

Zika virus (ZIKV) is a mosquito-borne virus that has re-emerged as a significant threat to global health in the recent decade. Whilst infections are primarily asymptomatic, the virus has been associated with the manifestation of severe neurological complications. At present, there is still a lack of approved antivirals for ZIKV infections. In this study, chelerythrine chloride, a benzophenanthridine alkaloid, was identified from a mid-throughput screen conducted on a 502-compound natural products library to be a novel and potent inhibitor of ZIKV infection in both in-vitro and in-vivo assays. Subsequent downstream studies demonstrated that the compound inhibits a post-entry step of the viral replication cycle and is capable of disrupting viral RNA synthesis and protein expression. The successful generation and sequencing of a ZIKV resistant mutant revealed that a single S61T mutation on the viral NS4B allowed ZIKV to overcome chelerythrine chloride inhibition. Further investigation revealed that chelerythrine chloride could directly inhibit ZIKV protein synthesis, and that the NS4B-S61T mutation confers resistance to this inhibition. This study has established chelerythrine chloride as a potential candidate for further development as a therapeutic agent against ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Infecção por Zika virus/tratamento farmacológico , Benzofenantridinas/farmacologia , Benzofenantridinas/metabolismo , Benzofenantridinas/uso terapêutico , Células Vero , Proteínas Virais/metabolismo , Replicação Viral , Antivirais/uso terapêutico
19.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764364

RESUMO

Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.


Assuntos
Alcaloides , Produtos Biológicos , Corydalis , Benzofenantridinas/farmacologia , Alcaloides/farmacologia , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral
20.
Artigo em Inglês | MEDLINE | ID: mdl-37586581

RESUMO

Chelerythrine (CHE), a natural benzophenanthridine alkaloid, possesses various biological and pharmacological activities, such as antimicrobial, antitumor and anti-inflammatory effects. However, its adverse side effect has not been fully elucidated. Therefore, this study was designed to investigate the developmental toxicity of CHE in zebrafish. We found that CHE could lead to a notably increase of the mortality and malformation rate, while lead to reduction of the hatching rate and body length. CHE also could affect the normal developing processes of the heart, liver and phagocytes in zebrafish. Furthermore, the reactive oxygen species (ROS) and apoptosis levels were notably increased. In addition, the mRNA expressions of genes (bax, caspase-9, p53, SOD1, KEAP1, TNF-α, STAT3 and NF-κB) were significantly increased, while the bcl2 and nrf2 were notably inhibited by CHE. These results indicated that the elevation of ROS and apoptosis were involved in the developmental toxicity induced by CHE. In conclusion, CHE exhibits a developmental toxicity in zebrafish, which helps to understand the potential toxic effect of CHE.


Assuntos
Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Benzofenantridinas/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Apoptose , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...